This HTML5 document contains 35 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

Namespace Prefixes

PrefixIRI
dctermshttp://purl.org/dc/terms/
n5doi:10.1007/
n2https://kar.kent.ac.uk/id/eprint/
wdrshttp://www.w3.org/2007/05/powder-s#
dchttp://purl.org/dc/elements/1.1/
n15http://purl.org/ontology/bibo/status/
n19https://kar.kent.ac.uk/id/subject/
rdfshttp://www.w3.org/2000/01/rdf-schema#
n18https://kar.kent.ac.uk/id/eprint/69530#
n11https://demo.openlinksw.com/about/id/entity/https/raw.githubusercontent.com/annajordanous/CO644Files/main/
n12http://eprints.org/ontology/
n21https://kar.kent.ac.uk/id/event/
n9https://kar.kent.ac.uk/69530/
bibohttp://purl.org/ontology/bibo/
n17https://kar.kent.ac.uk/id/publication/
n20https://kar.kent.ac.uk/id/org/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
owlhttp://www.w3.org/2002/07/owl#
n13https://kar.kent.ac.uk/id/document/
n14https://kar.kent.ac.uk/id/
xsdhhttp://www.w3.org/2001/XMLSchema#
n22https://demo.openlinksw.com/about/id/entity/https/www.cs.kent.ac.uk/people/staff/akj22/materials/CO644/
n7https://kar.kent.ac.uk/id/person/

Statements

Subject Item
n2:69530
rdf:type
bibo:BookSection bibo:Article n12:BookSectionEPrint n12:EPrint
rdfs:seeAlso
n9:
owl:sameAs
n5:978-3-030-05587-5_21
n12:hasAccepted
n13:3132673
n12:hasDocument
n13:3150292 n13:3132673 n13:3150289 n13:3150290 n13:3150291 n13:3132674
dc:hasVersion
n13:3132673
dcterms:title
Deep Neural Networks for Automatic Classification of Anesthetic-Induced Unconsciousness
wdrs:describedby
n11:export_kar_RDFN3.n3 n22:export_kar_RDFN3.n3
dcterms:date
2018-12-07
dcterms:creator
n7:ext-1bc05d0c06ae4ce168b2d155348a36dd n7:ext-ada0789c178d11af150bd1e1fe7a4ef5 n7:ext-ac10a867d9ee4333fe0a2e48f27875fc n7:ext-91ca9789d82c3f59911763bc1976dfbc n7:ext-kp356@kent.ac.uk n7:ext-s.chennu-785@kent.ac.uk n7:ext-b8dd1d44d26d0584878421defff4fef1 n7:ext-2aa08421be2d8b36190bb6641598067e
bibo:status
n15:peerReviewed n15:published
dcterms:publisher
n20:ext-1c5ddec173ca8cdfba8b274309638579
bibo:abstract
Despite the common use of anesthetics to modulate consciousness in the clinic, brain-based monitoring of consciousness is uncommon. We com-bined electroencephalographic measurement of brain activity with deep neural networks to automatically discriminate anesthetic states induced by propofol. Our results with leave-one-participant-out-cross-validation show that convolutional neural networks significantly outperform multilayer perceptrons in discrimination accuracy when working with raw time series. Perceptrons achieved comparable accuracy when provided with power spec-tral densities. These findings highlight the potential of deep convolutional networks for completely automatic extraction of useful spatio-temporo-spectral features from human EEG.
dcterms:isPartOf
n14:repository n17:ext-03029743
dcterms:subject
n19:T
bibo:authorList
n18:authors
bibo:presentedAt
n21:ext-10d33b666e33450ffdabfa5829baab0d