Not logged in : Login
(Sponging disallowed)

About: Constraints on Hebbian and STDP learned weights of a spiking neuron     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Constraints on Hebbian and STDP learned weights of a spiking neuron
described by
Date
  • 2021-01-02
Creator
status
Publisher
abstract
  • We analyse mathematically the constraints on weights resulting from Hebbian and STDP learning rules applied to a spiking neuron with weight normalisation. In the case of pure Hebbian learning, we find that the normalised weights equal the promotion probabilities of weights up to correction terms that depend on the learning rate and are usually small. A similar relation can be derived for STDP algorithms, where the normalised weight values reflect a difference between the promotion and demotion probabilities of the weight. These relations are practically useful in that they allow checking for convergence of Hebbian and STDP algorithms. Another application is novelty detection. We demonstrate this using the MNIST dataset.
Is Part Of
Subject
list of authors
volume
  • 135
is topic of
is primary topic of
Faceted Search & Find service v1.17_git150 as of Jan 20 2025


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software