Not logged in : Login
(Sponging disallowed)

About: A systematic framework for categorising IoT device fingerprinting mechanisms     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • A systematic framework for categorising IoT device fingerprinting mechanisms
described by
Date
  • 2020-10-10
Creator
status
abstract
  • The popularity of the Internet of Things (IoT) devices makes it increasingly important to be able to fingerprint them, for example in order to detect if there are misbehaving or even malicious IoT devices in one’s network. However, there are many challenges faced in the task of fingerprinting IoT devices, mainly due to the huge variety of the devices involved. At the same time, the task can potentially be improved by applying machine learning techniques for better accuracy and efficiency. The aim of this paper is to provide a systematic categorisation of machine learning augmented techniques that can be used for fingerprinting IoT devices. This can serve as a baseline for comparing various IoT fingerprinting mechanisms, so that network administrators can choose one or more mechanisms that are appropriate for monitoring and maintaining their network. We carried out an extensive literature review of existing papers on fingerprinting IoT devices – paying close attention to those with machine learning features. This is followed by an extraction of important and comparable features among the mechanisms outlined in those papers. As a result, we came up with a key set of terminologies that are relevant both in the fingerprinting context and in the IoT domain. This enabled us to construct a framework called IDWork, which can be used for categorising existing IoT fingerprinting mechanisms in a way that will facilitate a coherent and fair comparison of these mechanisms. We found that the majority of the IoT fingerprinting mechanisms take a passive approach – mainly through network sniffing – instead of being intrusive and interactive with the device of interest. Additionally, a significant number of the surveyed mechanisms employ both static and dynamic approaches, in order to benefit from complementary features that can be more robust against certain attacks such as spoofing and replay attacks.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 36 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software