Not logged in : Login
(Sponging disallowed)

About: Breaking the Circularity in Circular Analyses: Simulations and Formal Treatment of the Flattened Average Approach     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Breaking the Circularity in Circular Analyses: Simulations and Formal Treatment of the Flattened Average Approach
described by
Date
  • 2020-11-23
Creator
status
Publisher
abstract
  • There has been considerable debate and concern as to whether there is a replication crisis in the scientific literature. A likely cause of poor replication is the multiple comparisons problem. An important way in which this problem can manifest in the M/EEG context is through post hoc tailoring of analysis windows (a.k.a. regions-of-interest, ROIs) to landmarks in the collected data. Post hoc tailoring of ROIs is used because it allows researchers to adapt to inter-experiment variability and discover novel differences that fall outside of windows defined by prior precedent, thereby reducing Type II errors. However, this approach can dramatically inflate Type I error rates. One way to avoid this problem is to tailor windows according to a contrast that is orthogonal (strictly parametrically orthogonal) to the contrast being tested. A key approach of this kind is to identify windows on a fully flattened average. On the basis of simulations, this approach has been argued to be safe for post hoc tailoring of analysis windows under many conditions. Here, we present further simulations and mathematical proofs to show exactly why the Fully Flattened Average approach is unbiased, providing a formal grounding to the approach, clarifying the limits of its applicability and resolving published misconceptions about the method. We also provide a statistical power analysis, which shows that, in specific contexts, the fully flattened average approach provides higher statistical power than Fieldtrip cluster inference. This suggests that the Fully Flattened Average approach will enable researchers to identify more effects from their data without incurring an inflation of the false positive rate.
Is Part Of
Subject
list of authors
issue
  • 11
volume
  • 16
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 14 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software