Not logged in : Login
(Sponging disallowed)

About: Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • Comparing enrichment analysis and machine learning for identifying gene properties that discriminate between gene classes
described by
Date
  • 2020-05
Creator
status
Publisher
abstract
  • Biologists very often use enrichment methods based on statistical hypothesis tests to identify gene properties that are significantly over-represented in a given set of genes of interest, by comparison with a ‘background’ set of genes. These enrichment methods, although based on rigorous statistical foundations, are not always the best single option to identify patterns in biological data. In many cases, one can also use classification algorithms from the machine-learning field. Unlike enrichment methods, classification algorithms are designed to maximize measures of predictive performance and are capable of analysing combinations of gene properties, instead of one property at a time. In practice, however, the majority of studies use either enrichment or classification methods (rather than both), and there is a lack of literature discussing the pros and cons of both types of method. The goal of this paper is to compare and contrast enrichment and classification methods, offering two contributions. First, we discuss the (to some extent complementary) advantages and disadvantages of both types of methods for identifying gene properties that discriminate between gene classes. Second, we provide a set of high-level recommendations for using enrichment and classification methods. Overall, by highlighting the strengths and the weaknesses of both types of methods we argue that both should be used in bioinformatics analyses.
Is Part Of
Subject
list of authors
issue
  • 3
volume
  • 21
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software