Not logged in : Login
(Sponging disallowed)

About: Ransomware Deployment Methods and Analysis: Views from a Predictive Model and Human Responses     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
http://eprints.org...y/hasSupplemental
dc:hasVersion
Title
  • Ransomware Deployment Methods and Analysis: Views from a Predictive Model and Human Responses
described by
Date
  • 2019-02-12
Creator
status
Publisher
abstract
  • Ransomware incidents have increased dramatically in the past few years. The number of ransomware variants is also increasing, which means signature and heuristic-based detection techniques are becoming harder to achieve, due to the ever changing pattern of ransomware attack vectors. Therefore, in order to combat ransomware, we need a better understanding on how ransomware is being deployed, its characteristics, as well as how potential victims may react to ransomware incidents. This paper aims to address this challenge by carrying out an investigation on 18 families of ransomware, leading to a model for categorising ransomware behavioural characteristics, which can then be used to improve detection and handling of ransomware incidents. The categorisation was done in respect to the stages of ransomware deployment methods with a predictive model we developed called Randep. The stages are fingerprint, propagate, communicate, map, encrypt, lock, delete and threaten. Analysing the samples gathered for the predictive model provided an insight into the stages and timeline of ransomware execution. Furthermore, we carried out a study on how potential victims (individuals, as well as IT support staff at universities and SMEs) detect that ransomware was being deployed on their machine, what steps they took to investigate the incident, and how they responded to the attack. Both quantitative and qualitative data were collected through questionnaires and in-depth interviews. The results shed an interesting light into the most common attack methods, the most targeted operating systems and the infection symptoms, as well as recommended defence mechanisms. This information can be used in the future to create behavioural patterns for improved ransomware detection and response.
Is Part Of
Subject
list of authors
volume
  • 8
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 22 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software