Not logged in : Login
(Sponging disallowed)

About: A normalisation approach improves the performance of inter-subject sEMG-based hand gesture recognition with a ConvNet     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • A normalisation approach improves the performance of inter-subject sEMG-based hand gesture recognition with a ConvNet
described by
Date
  • 2020-08-27
Creator
status
Publisher
abstract
  • Recently, the subject-specific surface electromyography (sEMG)-based gesture classification with deep learning algorithms has been widely researched. However, it is not practical to obtain the training data by requiring a user to perform hand gestures many times in real life. This problem can be alleviated to a certain extent if sEMG from many other subjects could be used to train the classifier. In this paper, we propose a normalisation approach that allows implementing real-time subject-independent sEMG based hand gesture classification without training the deep learning algorithm subject specifically. We hypothesed that the amplitude ranges of sEMG across channels between forearm muscle contractions for a hand gesture recorded in the same condition do not vary significantly within each individual. Therefore, the min-max normalisation is applied to source domain data but the new maximum and minimum values of each channel used to restrict the amplitude range are calculated from a trial cycle of a new user (target domain) and assigned by the class label. A convolutional neural network (ConvNet) trained with the normalised data achieved an average 87.03 accuracy on our G. dataset (12 gestures) and 94.53 on M. dataset (7 gestures) by using the leave-one-subject-out cross-validation.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software