Not logged in : Login
(Sponging disallowed)

About: Towards Safer Industrial Serial Networks: An Expert System Framework for Anomaly Detection     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Towards Safer Industrial Serial Networks: An Expert System Framework for Anomaly Detection
described by
Date
  • 2021-12-21
Creator
status
Publisher
abstract
  • Cyber security is a topic of increasing relevance in relation to industrial networks. The higher intensity and intelligent use of data pushed by smart technology (Industry 4.0) together with an augmented integration between the operational technology (production) and the information technology (business) parts of the network have considerably raised the level of vulnerabilities. On the other hand, many industrial facilities still use serial networks as underlying communication system, and they are notoriously limited from a cyber security perspective since protection mechanisms available for TCP/IP communication do not apply. Therefore, an attacker gaining access to a serial network can easily control the industrial components, potentially causing catastrophic incidents, jeopardizing assets and human lives. This study proposes a framework to act as an anomaly detection system (ADS) for industrial serial networks. It has three ingredients: an unsupervised K-means component to analyse message content, a knowledge-based expert system component to analyse message metadata, and a voting process to generate alerts for security incidents, anomalous states, and faults. The framework was evaluated using the Profibus-DP, a network simulator which implements a serial bus system. Results for the simulated traffic were promising: 99.90% for accuracy, 99,64% for precision, and 99.28% for F1-Score. They indicate feasibility of the framework applied to serial-based industrial networks.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git150 as of Jan 20 2025


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 33 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software