Not logged in : Login
(Sponging disallowed)

About: How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • How hot is the hot zone? Computational modelling clarifies the role of parietal and frontoparietal connectivity during anaesthetic-induced loss of consciousness
described by
Date
  • 2021-02-09
Creator
status
Publisher
abstract
  • In recent years, specific cortical networks have been proposed to be crucial for sustaining consciousness, including the posterior hot zone and frontoparietal resting state networks (RSN). Here, we computationally evaluate the relative contributions of three RSNs – the default mode network (DMN), the salience network (SAL), and the central executive network (CEN) – to consciousness and its loss during propofol anaesthesia. Specifically, we use dynamic causal modelling (DCM) of 10 minutes of high-density EEG recordings (N = 10, 4 males) obtained during behavioural responsiveness, unconsciousness and post-anaesthetic recovery to characterise differences in effective connectivity within frontal areas, the posterior ‘hot zone’, frontoparietal connections, and between-RSN connections. We estimate – for the first time – a large DCM model (LAR) of resting EEG, combining the three RSNs into a rich club of interconnectivity. Consistent with the hot zone theory, our findings demonstrate reductions in inter-RSN connectivity in the parietal cortex. Within the DMN itself, the strongest reductions are in feed-forward frontoparietal and parietal connections at the precuneus node. Within the SAL and CEN, loss of consciousness generates small increases in bidirectional connectivity. Using novel DCM leave-one-out cross-validation, we show that the most consistent out-of-sample predictions of the state of consciousness come from a key set of frontoparietal connections. This finding also generalises to unseen data collected during post-anaesthetic recovery. Our findings provide new, computational evidence for the importance of the posterior hot zone in explaining the loss of consciousness, highlighting also the distinct role of frontoparietal connectivity in underpinning conscious responsiveness, and consequently, suggest a dissociation between the mechanisms most prominently associated with explaining the contrast between conscious awareness and unconsciousness, and those maintaining consciousness.
Is Part Of
list of authors
volume
  • 231
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 22 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software