Not logged in : Login
(Sponging disallowed)

About: Behavioural Digital Forensics Model: Embedding Behavioural Evidence Analysis into the Investigation of Digital Crimes     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Behavioural Digital Forensics Model: Embedding Behavioural Evidence Analysis into the Investigation of Digital Crimes
described by
Date
  • 2019-03-01
Creator
status
Publisher
abstract
  • The state-of-the-art and practice show an increased recognition, but limited adoption, of Behavioural Evidence Analysis (BEA) within the Digital Forensics (DF) investigation process. Yet, there is currently no BEA-driven process model and guidelines for DF investigators to follow in order to take advantage of such an approach. This paper proposes the Behavioural Digital Forensics Model to fill this gap. It takes a multidisciplinary approach which incorporates BEA into in-lab investigation of seized devices related to interpersonal cases (i.e., digital crimes involving human interactions between offender(s) and victim(s)). The model was designed based on the application of traditional BEA phases to 35 real cases, and evaluated using 5 real digital crime cases - all from Dubai Police archive. This paper, however, provides details of only one case from this evaluation pool. Compared to the outcome of these cases using a traditional DF investigation process, the new model showed a number of benefits. It allowed a more effective focusing of the investigation, and provided logical directions for identifying the location of further relevant evidence. It also enabled a better understanding and interpretation of victim/offender behaviours (e.g., probable offenders' motivations and modus operandi), which facilitated a more in depth understanding of the dynamics of the specific crime. Finally, in some cases, it enabled the identification of suspect's collaborators, something which was not identified via the traditional investigative process.
Is Part Of
list of authors
volume
  • 28
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software