Not logged in : Login
(Sponging disallowed)

About: Automatic Sleep Stage Classification Using Single-Channel EEG: Learning Sequential Features with Attention-Based Recurrent Neural Networks     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Automatic Sleep Stage Classification Using Single-Channel EEG: Learning Sequential Features with Attention-Based Recurrent Neural Networks
described by
Date
  • 2018-10-29
Creator
status
Publisher
abstract
  • We propose in this work a feature learning approach using deep bidirectional recurrent neural networks (RNNs) with attention mechanism for single-channel automatic sleep stage classification. We firstly decompose an EEG epoch into multiple small frames and subsequently transform them into a sequence of frame-wise feature vectors. Given the training sequences, the attention-based RNN is trained in a sequence-to-label fashion for sleep stage classification. Due to discriminative training, the network is expected to encode information of an input sequence into a high-level feature vector after the attention layer. We, therefore, treat the trained network as a feature extractor and extract these feature vectors for classification which is accomplished by a linear SVM classifier. We also propose a discriminative method to learn a filter bank with a DNN for preprocessing purpose. Filtering the frame-wise feature vectors with the learned filter bank beforehand leads to further improvement on the classification performance. The proposed approach demonstrates good performance on the Sleep-EDF dataset.
Is Part Of
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 63 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software