Not logged in : Login
(Sponging disallowed)

About: Automatic Quantitative Analysis of Human Respired Carbon Dioxide Waveform for Asthma and Non-Asthma Classification Using Support Vector Machine     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Automatic Quantitative Analysis of Human Respired Carbon Dioxide Waveform for Asthma and Non-Asthma Classification Using Support Vector Machine
described by
Date
  • 2018-09-20
Creator
status
Publisher
abstract
  • Currently, carbon dioxide (CO2) waveforms measured by capnography are used to estimate respiratory rate and end-tidal CO2 (EtCO2) in the clinic. However, the shape of the CO2 signal carries significant diagnostic information about the asthmatic condition. Previous studies have shown a strong correlation between various features that quantitatively characterize the shape of CO2 signal and are used to discriminate asthma from non-asthma using pulmonary function tests, but no reliable progress was made, and no translation into clinical practice has been achieved. Therefore, this study reports a relatively simple signal processing algorithm for automatic differentiation of asthma and non-asthma. CO2 signals were recorded from 30 non-asthmatic and 43 asthmatic patients. Each breath cycle was decomposed into subcycles, and features were computationally extracted. Thereafter, feature selection was performed using the area (Az) under the receiver operating characteristics curve analysis. A classification was performed via a leave-one-out (LOO) cross-validation procedure by employing a support vector machine (SVM). Our results show maximum screening capabilities for upward expiration (AR1), downward inspiration (AR2) and the sum of AR1 and AR2, with an Az of 0.892, 0.803, and 0.793, respectively. The proposed method obtained an average accuracy of 94.52%, sensitivity of 97.67%, and specificity of 90% for discrimination of asthma and non-asthma. The proposed method allows for automatic classification of asthma and non-asthma condition by analyzing the shape of the CO2 waveform. The developed method may possibly be incorporated in real-time for assessment and management of the asthmatic conditions.
Is Part Of
Subject
list of authors
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 15 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software