Not logged in : Login
(Sponging disallowed)

About: Improved Conditional Generative Adversarial Net Classification For Spoken Language Recognition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Improved Conditional Generative Adversarial Net Classification For Spoken Language Recognition
described by
Date
  • 2018-12-18
Creator
status
Publisher
abstract
  • Recent research on generative adversarial nets (GAN) for language identification (LID) has shown promising results. In this paper, we further exploit the latent abilities of GAN networks to firstly combine them with deep neural network (DNN)-based i-vector approaches and then to improve the LID model using conditional generative adversarial net (cGAN) classification. First, phoneme dependent deep bottleneck features (DBF) combined with output posteriors of a pre-trained DNN for automatic speech recognition (ASR) are used to extract i-vectors in the normal way. These i-vectors are then classified using cGAN, and we show an effective method within the cGAN to optimize parameters by combining both language identification and verification signals as supervision. Results show firstly that cGAN methods can significantly outperform DBF DNN i-vector methods where 49-dimensional i-vectors are used, but not where 600-dimensional vectors are used. Secondly, training a cGAN discriminator network for direct classification has further benefit for low dimensional i-vectors as well as short utterances with high dimensional i-vectors. However, incorporating a dedicated discriminator network output layer for classification and optimizing both classification and verification loss brings benefits in all test cases.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 34 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software