Not logged in : Login
(Sponging disallowed)

About: Detecting Cyber Security Related Twitter Accounts and Different Sub-Groups: A Multi-Classifier Approach     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Detecting Cyber Security Related Twitter Accounts and Different Sub-Groups: A Multi-Classifier Approach
described by
Date
  • 2021-11-08
Creator
status
Publisher
abstract
  • Many cyber security experts, organizations, and cyber criminals are active users on online social networks (OSNs). Therefore, detecting cyber security related accounts on OSNs and monitoring their activities can be very useful for different purposes such as cyber threat intelligence, detecting and preventing cyber attacks and online harms on OSNs, and evaluating the effectiveness of cyber security awareness activities on OSNs. In this paper, we report our work on developing several machine learning based classifiers for detecting cyber security related accounts on Twitter, including a base-line classifier for detecting cyber security related accounts in general, and three sub-classifiers for detecting three subsets of cyber security related accounts (individuals, hackers, and academia). To train and test the classifiers, we followed a more systemic approach (based on a cyber security taxonomy, real-time sampling of tweets, and crowdsourcing) to construct a dataset of cyber security related accounts with multiple tags assigned to each account. For each classifier, we considered a richer set of features than those used in past studies. Among five machine learning models tested, the Random Forest model achieved the best performance: 93% for the base-line classifier, 88-91% for the three sub-classifiers. We also studied feature reduction of the base-line classifier and showed that using just six features we can already achieve the same performance.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 63 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software