Not logged in : Login
(Sponging disallowed)

About: Human action recognition using deep rule-based classifier     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • Human action recognition using deep rule-based classifier
described by
Date
  • 2020-11-01
Creator
status
Publisher
abstract
  • In recent years, numerous techniques have been proposed for human activity recognition (HAR) from images and videos. These techniques can be divided into two major categories: handcrafted and deep learning. Deep Learning-based models have produced remarkable results for HAR. However, these models have several shortcomings, such as the requirement for a massive amount of training data, lack of transparency, offline nature, and poor interpretability of their internal parameters. In this paper, a new approach for HAR is proposed, which consists of an interpretable, self-evolving, and self-organizing set of 0-order If...THEN rules. This approach is entirely data-driven, and non-parametric; thus, prototypes are identified automatically during the training process. To demonstrate the effectiveness of the proposed method, a set of high-level features is obtained using a pre-trained deep convolution neural network model, and a recently introduced deep rule-based classifier is applied for classification. Experiments are performed on a challenging benchmark dataset UCF50; results confirmed that the proposed approach outperforms state-of-the-art methods. In addition to this, an ablation study is conducted to demonstrate the efficacy of the proposed approach by comparing the performance of our DRB classifier with four state-of-the-art classifiers. This analysis revealed that the DRB classifier could perform better than state-of-the-art classifiers, even with limited training samples.
Is Part Of
Subject
list of authors
issue
  • 41-42
volume
  • 79
is topic of
is primary topic of
Faceted Search & Find service v1.17_git150 as of Jan 20 2025


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 33 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software