Not logged in : Login
(Sponging disallowed)

About: A self-training hierarchical prototype-based approach for semi-supervised classification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • A self-training hierarchical prototype-based approach for semi-supervised classification
described by
Date
  • 2020-10-01
Creator
status
Publisher
abstract
  • This paper introduces a novel self-training hierarchical prototype-based approach for semi-supervised classification. The proposed approach firstly identifies meaningful prototypes from labelled samples at multiple levels of granularity and, then, self-organizes a highly transparent, multi-layered recognition model by arranging them in a form of pyramidal hierarchies. After this, the learning model continues to self-evolve its structure and self-expand its knowledge base to incorporate new patterns recognized from unlabelled samples by exploiting the pseudo-label technique. Thanks to its prototype-based nature, the overall computational process of the proposed approach is highly explainable and traceable. Experimental studies with various benchmark image recognition problems demonstrate the state-of-the-art performance of the proposed approach, showing its strong capability to mine key information from unlabelled data for classification.
Is Part Of
Subject
list of authors
volume
  • 535
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Jan 29 2025, on Linux (x86_64-generic-linux-glibc25), Single-Server Edition (378 GB total memory, 22 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software