Not logged in : Login
(Sponging disallowed)

About: Asynchronous Snapshots of Actor Systems for Latency-Sensitive Applications     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Asynchronous Snapshots of Actor Systems for Latency-Sensitive Applications
described by
Date
  • 2019-10-20
Creator
status
Publisher
abstract
  • The actor model is popular for many types of server applications. Efficient snapshotting of applications is crucial in the deployment of pre-initialized applications or moving running applications to different machines, e.g for debugging purposes. A key issue is that snapshotting blocks all other operations. In modern latency-sensitive applications, stopping the application to persist its state needs to be avoided, because users may not tolerate the increased request latency. In order to minimize the impact of snapshotting on request latency, our approach persists the application’s state asynchronously by capturing partial heaps, completing snapshots step by step. Additionally, our solution is transparent and supports arbitrary object graphs. We prototyped our snapshotting approach on top of the Truffle/Graal platform and evaluated it with the Savina benchmarks and the Acme Air microservice application. When performing a snapshot every thousand Acme Air requests, the number of slow requests ( 0.007% of all requests) with latency above 100ms increases by 5.43%. Our Savina microbenchmark results detail how different utilization patterns impact snapshotting cost. To the best of our knowledge, this is the first system that enables asynchronous snapshotting of actor applications, i.e. without stop-the-world synchronization, and thereby minimizes the impact on latency. We thus believe it enables new deployment and debugging options for actor systems.
Is Part Of
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 32 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software