Not logged in : Login
(Sponging disallowed)

About: Parallelism and partitioning in large-scale GAs using spark     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Parallelism and partitioning in large-scale GAs using spark
described by
Date
  • 2019-07-13
Creator
status
Publisher
abstract
  • Big Data promises new scientific discovery and economic value. Genetic algorithms (GAs) have proven their flexibility in many application areas and substantial research effort has been dedicated to improving their performance through parallelisation. In contrast with most previous efforts we reject approaches that are based on the centralisation of data in the main memory of a single node or that require remote access to shared/distributed memory. We focus instead on scenarios where data is partitioned across machines. In this partitioned scenario, we explore two parallelisation models: PDMS, inspired by the traditional master-slave model, and PDMD, based on island models; we compare their performance in large-scale classification problems. We implement two distributed versions of Bio-HEL, a popular large-scale single-node GA classifier, using the Spark distributed data processing platform. In contrast to existing GA based on MapReduce, Spark allows a more efficient implementation of parallel GAs thanks to its simple, efficient iterative processing of partitioned datasets. We study the accuracy, efficiency and scalability of the proposed models. Our results show that PDMS provides the same accuracy of traditional BioHEL and exhibit good scalability up to 64 cores, while PDMD provides substantial reduction of execution time at a minor loss of accuracy.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 12 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software