Not logged in : Login
(Sponging disallowed)

About: Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
described by
Date
  • 2018-10-22
Creator
status
Publisher
abstract
  • Correctly identifying sleep stages is important in diagnosing and treating sleep disorders. This work proposes a joint classification-and-prediction framework based on convolutional neural networks (CNNs) for automatic sleep staging, and, subsequently, introduces a simple yet efficient CNN architecture to power the framework. Given a single input epoch, the novel framework jointly determines its label (classification) and its neighboring epochs' labels (prediction) in the contextual output. While the proposed framework is orthogonal to the widely adopted classification schemes, which take one or multiple epochs as contextual inputs and produce a single classification decision on the target epoch, we demonstrate its advantages in several ways. First, it leverages the dependency among consecutive sleep epochs while surpassing the problems experienced with the common classification schemes. Second, even with a single model, the framework has the capacity to produce multiple decisions, which are essential in obtaining a good performance as in ensemble-of-models methods, with very little induced computational overhead. Probabilistic aggregation techniques are then proposed to leverage the availability of multiple decisions. To illustrate the efficacy of the proposed framework, we conducted experiments on two public datasets: Sleep-EDF Expanded (Sleep-EDF), which consists of 20 subjects, and Montreal Archive of Sleep Studies (MASS) dataset, which consists of 200 subjects. The proposed framework yields an overall classification accuracy of 82.3% and 83.6%, respectively. We also show that the proposed framework not only is superior to the baselines based on the common classification schemes but also outperforms existing deep-learning approaches. To our knowledge, this is the first work going beyond the standard single-output classification to consider multitask neural networks for automatic sleep staging. This framework provides avenues for further studies of different neural-network architectures for automatic sleep staging.
Is Part Of
list of authors
is topic of
is primary topic of
Faceted Search & Find service v1.17_git149 as of Dec 03 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 30 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software