Not logged in : Login
(Sponging disallowed)

About: Empirical Approach—Introduction     Goto   Sponge   Distinct   Permalink

An Entity of Type : bibo:BookSection, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
Title
  • Empirical Approach—Introduction
  • Empirical Approach—Introduction
described by
Date
  • 2018-10-18
  • 2018-10-18
Creator
status
Publisher
abstract
  • In this chapter, we will describe the fundamentals of the proposed new “empirical” approach as a systematic methodology with its nonparametric quantities derived entirely from the actual data with no subjective and/or problem-specific assumptions made. It has a potential to be a powerful extension of (and/or alternative to) the traditional probability theory, statistical learning and computational intelligence methods. The nonparametric quantities of the proposed new empirical approach include: (1) the cumulative proximity; (2) the eccentricity, and the standardized eccentricity; (3) the data density, and (4) the typicality. They can be recursively updated on a sample-by-sample basis, and they have unimodal and multimodal, discrete and continuous forms/versions. The nonparametric quantities are based on ensemble properties of the data and not limited by prior restrictive assumptions. The discrete version of the typicality resembles the unimodal probability density function, but is in a discrete form. The discrete multimodal typicality resembles the probability mass function.
  • In this chapter, we will describe the fundamentals of the proposed new “empirical” approach as a systematic methodology with its nonparametric quantities derived entirely from the actual data with no subjective and/or problem-specific assumptions made. It has a potential to be a powerful extension of (and/or alternative to) the traditional probability theory, statistical learning and computational intelligence methods. The nonparametric quantities of the proposed new empirical approach include: (1) the cumulative proximity; (2) the eccentricity, and the standardized eccentricity; (3) the data density, and (4) the typicality. They can be recursively updated on a sample-by-sample basis, and they have unimodal and multimodal, discrete and continuous forms/versions. The nonparametric quantities are based on ensemble properties of the data and not limited by prior restrictive assumptions. The discrete version of the typicality resembles the unimodal probability density function, but is in a discrete form. The discrete multimodal typicality resembles the probability mass function.
Is Part Of
Subject
list of authors
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software