Not logged in : Login
(Sponging disallowed)

About: Incentive value and spatial certainty combine additively to determine visual priorities     Goto   Sponge   Distinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Incentive value and spatial certainty combine additively to determine visual priorities
  • Incentive value and spatial certainty combine additively to determine visual priorities
described by
Date
  • 2020-10-09
  • 2020-10-09
Creator
status
Publisher
abstract
  • How does the brain combine information predictive of the value of a visually guided task (incentive value) with information predictive of where task-relevant stimuli may occur (spatial certainty)? Human behavioural evidence indicates that these two predictions may be combined additively to bias visual selection (Additive Hypothesis), whereas neuroeconomic studies posit that they may be multiplicatively combined (Expected Value Hypothesis). We sought to adjudicate between these two alternatives. Participants viewed two coloured placeholders that specified the potential value of correctly identifying an imminent letter target if it appeared in that placeholder. Then, prior to the target’s presentation, an endogenous spatial cue was presented indicating the target’s more likely location. Spatial cues were parametricallymanipulated with regard to the information gained (in bits). Across two experiments, performance was better for targets appearing in high versus low value placeholders and better when targets appeared in validly cued locations. Interestingly, as shown with a Bayesian model selection approach, these effects did not interact, clearly supporting the Additive Hypothesis. Even when conditions were adjusted to increase the optimality of a multiplicative operation, support for it remained. These findings refute recent theories that expected value computations are the singular mechanism driving the deployment of endogenous spatial attention. Instead, incentive value and spatial certainty seem to act independently to influence visual selection.
  • How does the brain combine information predictive of the value of a visually guided task (incentive value) with information predictive of where task-relevant stimuli may occur (spatial certainty)? Human behavioural evidence indicates that these two predictions may be combined additively to bias visual selection (Additive Hypothesis), whereas neuroeconomic studies posit that they may be multiplicatively combined (Expected Value Hypothesis). We sought to adjudicate between these two alternatives. Participants viewed two coloured placeholders that specified the potential value of correctly identifying an imminent letter target if it appeared in that placeholder. Then, prior to the target’s presentation, an endogenous spatial cue was presented indicating the target’s more likely location. Spatial cues were parametricallymanipulated with regard to the information gained (in bits). Across two experiments, performance was better for targets appearing in high versus low value placeholders and better when targets appeared in validly cued locations. Interestingly, as shown with a Bayesian model selection approach, these effects did not interact, clearly supporting the Additive Hypothesis. Even when conditions were adjusted to increase the optimality of a multiplicative operation, support for it remained. These findings refute recent theories that expected value computations are the singular mechanism driving the deployment of endogenous spatial attention. Instead, incentive value and spatial certainty seem to act independently to influence visual selection.
Is Part Of
Subject
list of authors
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software