Not logged in : Login
(Sponging disallowed)

About: Identifying Heavy Goods Vehicle Driving Styles in the United Kingdom     Goto   Sponge   Distinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Identifying Heavy Goods Vehicle Driving Styles in the United Kingdom
  • Identifying Heavy Goods Vehicle Driving Styles in the United Kingdom
described by
Date
  • 2019-08-27
  • 2019-08-27
Creator
status
Publisher
abstract
  • Although driving behavior has been largely studied amongst private motor vehicles drivers, the literature addressing heavy goods vehicle (HGV) drivers is scarce. Identifying the existing groups of driving stereotypes and their proportions enables researchers, companies, and policy makers to establish group-specific strategies to improve safety and economy. In addition, insight into driving styles can help predict drivers' reactions and therefore enable the modeling of interactions between vehicles and the possible obstacles encountered on a journey. Consequently, there are also contributions to the research and development of autonomous vehicles and smart roads. In this paper, our interest lies in investigating driving behavior within the HGV community in the United Kingdom (U.K.). We conduct analysis of a telematics dataset containing the incident information on 21 193 HGV drivers across the U.K. We are interested in answering two research questions: 1) What groups of behavior are we able to uncover? 2) How do these groups complement current findings in the literature? To answer these questions, we apply a two-stage data analysis methodology involving consensus clustering and ensemble classification to the dataset. Through the analysis, eight patterns of behavior are uncovered. It is also observed that although our findings have similarities to those from previous work on driving behavior, further knowledge is obtained, such as extra patterns and driving traits arising from vehicle and road characteristics.
  • Although driving behavior has been largely studied amongst private motor vehicles drivers, the literature addressing heavy goods vehicle (HGV) drivers is scarce. Identifying the existing groups of driving stereotypes and their proportions enables researchers, companies, and policy makers to establish group-specific strategies to improve safety and economy. In addition, insight into driving styles can help predict drivers' reactions and therefore enable the modeling of interactions between vehicles and the possible obstacles encountered on a journey. Consequently, there are also contributions to the research and development of autonomous vehicles and smart roads. In this paper, our interest lies in investigating driving behavior within the HGV community in the United Kingdom (U.K.). We conduct analysis of a telematics dataset containing the incident information on 21 193 HGV drivers across the U.K. We are interested in answering two research questions: 1) What groups of behavior are we able to uncover? 2) How do these groups complement current findings in the literature? To answer these questions, we apply a two-stage data analysis methodology involving consensus clustering and ensemble classification to the dataset. Through the analysis, eight patterns of behavior are uncovered. It is also observed that although our findings have similarities to those from previous work on driving behavior, further knowledge is obtained, such as extra patterns and driving traits arising from vehicle and road characteristics.
Is Part Of
Subject
list of authors
issue
  • 9
  • 9
volume
  • 20
  • 20
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 14 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software