Not logged in : Login
(Sponging disallowed)

About: Subtype Polymorphism à la carte via Machine Learning on Dependent Types     Goto   Sponge   Distinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
dc:hasVersion
Title
  • Subtype Polymorphism à la carte via Machine Learning on Dependent Types
  • Subtype Polymorphism à la carte via Machine Learning on Dependent Types
described by
Date
  • 2018-07-18
  • 2018-07-18
Creator
status
Publisher
abstract
  • The ability to write 'closed' frameworks in terms of abstract supertypes and subsequently extend them via contractually-conforming subtypes is a ubiquitous programming paradigm (e.g. underpinning Object-Orientation). While the motivation for such abstraction is to insulate against requirements change, any change of contract requires extensive (typically manual) refactoring, potentially throughout the entire class hierarchy. As an alternative to defining such abstractions a priori, we describe the broad role that Machine Learning can play in inducing abstractions from a pre-existing codebase. Concrete examples are given in which contacts are enforced by dependent types in the Idris language.
  • The ability to write 'closed' frameworks in terms of abstract supertypes and subsequently extend them via contractually-conforming subtypes is a ubiquitous programming paradigm (e.g. underpinning Object-Orientation). While the motivation for such abstraction is to insulate against requirements change, any change of contract requires extensive (typically manual) refactoring, potentially throughout the entire class hierarchy. As an alternative to defining such abstractions a priori, we describe the broad role that Machine Learning can play in inducing abstractions from a pre-existing codebase. Concrete examples are given in which contacts are enforced by dependent types in the Idris language.
Is Part Of
Subject
list of authors
presented at
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 38 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software