Not logged in : Login
(Sponging disallowed)

About: Entropy4Cloud: Using Entropy-Based Complexity To Optimize Cloud Service Resource Management     Goto   Sponge   Distinct   Permalink

An Entity of Type : bibo:AcademicArticle, within Data Space : linkeddata.uriburner.com:28898 associated with source document(s)

AttributesValues
type
seeAlso
sameAs
http://eprints.org/ontology/hasAccepted
http://eprints.org/ontology/hasDocument
http://eprints.org/ontology/hasPublished
dc:hasVersion
Title
  • Entropy4Cloud: Using Entropy-Based Complexity To Optimize Cloud Service Resource Management
  • Entropy4Cloud: Using Entropy-Based Complexity To Optimize Cloud Service Resource Management
described by
Date
  • 2018-01-23
  • 2018-01-23
Creator
status
Publisher
abstract
  • In cloud service resource management system, complexity limits the system’s ability to better satisfy the application’s QoS requirements, e.g. cost budget, average response time and reliability. Numerousness, diversity, variety, uncertainty, etc. are some of the complexity factors which lead to the variation between expected plan and actual running performance of cloud applications. In this paper, after defining the complexity clearly, we identify the origin of complexity in cloud service resource management system through the study of ”Local Activity Principle”. In order to manage complexity, an Entropy-based methodology is presented to use which covers identifying, measuring, analysing and controlling (avoid and reduce) of complexity. Finally, we implement such idea in a popular cloud engine, Apache Spark, for running Analysis as a Service (AaaS). Experiments demonstrate that the new, Entropy-based resource management approach can significantly improve the performance of Spark applications. Compare with the Fair Scheduler in Apache Spark, our proposed Entropy Scheduler is able to reduce overall cost by 23%, improve the average service response time by 15% - 20% and minimized the standard deviation of service response time by 30% - 45%.
  • In cloud service resource management system, complexity limits the system’s ability to better satisfy the application’s QoS requirements, e.g. cost budget, average response time and reliability. Numerousness, diversity, variety, uncertainty, etc. are some of the complexity factors which lead to the variation between expected plan and actual running performance of cloud applications. In this paper, after defining the complexity clearly, we identify the origin of complexity in cloud service resource management system through the study of ”Local Activity Principle”. In order to manage complexity, an Entropy-based methodology is presented to use which covers identifying, measuring, analysing and controlling (avoid and reduce) of complexity. Finally, we implement such idea in a popular cloud engine, Apache Spark, for running Analysis as a Service (AaaS). Experiments demonstrate that the new, Entropy-based resource management approach can significantly improve the performance of Spark applications. Compare with the Fair Scheduler in Apache Spark, our proposed Entropy Scheduler is able to reduce overall cost by 23%, improve the average service response time by 15% - 20% and minimized the standard deviation of service response time by 30% - 45%.
Is Part Of
Subject
list of authors
issue
  • 1
  • 1
volume
  • 2
  • 2
is topic of
is primary topic of
Faceted Search & Find service v1.17_git144 as of Jul 26 2024


Alternative Linked Data Documents: iSPARQL | ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Aug 25 2024, on Linux (x86_64-ubuntu_noble-linux-glibc2.38-64), Single-Server Edition (378 GB total memory, 37 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software